
Template-Assisted Hydrothermal Synthesis of Li₂MnSiO₄ as a Cathode Material for Lithium Ion Batteries

Man Xie,^{†,‡} Rui Luo,[†] Renjie Chen,^{*,†,‡} Feng Wu,^{†,‡} Taolin Zhao,[†] Qiuyan Wang,^{†,‡} and Li Li^{†,‡}

[†]Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street Haidian District, Beijing 100081, China

[‡]National Development Center of High Technology Green Materials, Beijing 100081, China

ABSTRACT: Lithium manganese silicate (Li_2MnSiO_4) is an attractive cathode material with a potential capacity above 300 mA h g⁻¹ if both lithium ions can be extracted reversibly. Two drawbacks of low electronic conductivity and structural collapse could be overcome by a conductive surface coating and a porous structure. Porous morphology with inner mesopores offers larger surface area and shorter ions diffusion pathways and also buffers the volume changes during lithium insertion and extraction. In this paper, mesoporous Li_2MnSiO_4 (M- Li_2MnSiO_4) prepared using MCM-41 as template through a hydrothermal route is compared to a sample of bulk Li_2MnSiO_4 (B- Li_2MnSiO_4) using silica as template under the same conditions. Also, in situ carbon coating technique was used to improve the electronic conductivity of M- Li_2MnSiO_4 . The physical properties of these cathode materials were further characterized by SEM, XRD, FTIR, and N₂ adsorption–desorption. It is shown that

 $M-Li_2MnSiO_4$ exhibits porous structure with pore sizes distributed in the range 9–12 nm, and when used as cathode electrode material, $M-Li_2MnSiO_4$ exhibits enhanced specific discharge capacity of 193 mA h g⁻¹ at a constant current of 20 mA g⁻¹ compared with 120.1 mA h g⁻¹ of B-Li_2MnSiO_4. This is attributed to the porous structure which allows the electrolyte to penetrate into the particles easily. And carbon-coated $M-Li_2MnSiO_4$ shows smaller charge transfer resistance and higher capacity of 217 mA h g⁻¹ because carbon coating retains the porous structure and enhances the electrical conductivity.

KEYWORDS: lithium ion batteries, M-Li₂MnSiO₄, template-assisted, carbon coating, porous structure

INTRODUCTION

Rechargeable lithium ion batteries (LIBs) were originally developed and urgently expanded as high energy power sources not only for portable devices but also for electric vehicles (EVs) and hybrid electric vehicles (HEVs).¹⁻⁴ LIBs are also needed in the transportation industry in order to reduce the reliance on fossil fuel and oil.^{5,6}

Lithium orthosilicate Li_2MSiO_4 has attracted considerable attention due to its high theoretical capacity, more than 300 mA h g⁻¹ if two lithium ions can be extracted reversibly.^{7–11} Additionally, raw materials of lithium orthosilicate are relatively safe, abundant, and low-cost.^{12–14} However, the application of Li_2MnSiO_4 as a cathode material is limited by some drawbacks, such as low electronic conductivity and structural degradation,^{7,15,16} resulting in large polarization and poor reversibility with electrochemical cycling.^{4,17}

To address these drawbacks, numerous strategies including carbon coating have been developed to enhance the electronic conductivity.⁹ Porous structure has also been utilized to reduce the length for Li⁺ diffusion.^{11,12,18,19} Conductive carbon coating has proven to be an effective and simple way to improve the electronic conductivity of polyanion materials. It is generally realized in two ways: ex situ carbon coating and in situ carbon coating.²⁰ A thin and homogeneous carbon layer can be formed on the surface of particles and contribute to good electrochemical performances.¹¹

Mesoporous material with regularly ordered pore arrangement and constant pore diameter from 2 to 10 nm was revealed by the Mobil Corporation Strategy Research Center.^{21–23} Since then, numerous research studies have been concentrated on MCM-41. This new family of mesoporous molecular sieves has high specific area (up to 1000 m² g⁻¹ or higher), a well-defined mesoporous array, and good adsorption properties.^{7,22,24,25} These excellent properties endow them with potential applications in catalysis, adsorption, sensors, and LIBs.^{26–29} Fabricating a mesoporous architecture with internal pores is a favorable route to buffer the effect of the volume changes during lithium extraction/insertion, and ensure the electrolyte penetration into the materials and thus enlarge the contact area and shorten Li⁺ extraction/insertion pathways during cycling.^{7,30,31} Additionally, template-assisted approaches are widely used for surface modification to create electrostatic or chemical interactions.²

Hydrothermal synthesis is one of the routes to prepare pure phase, small, and homogeneous materials with the desired morphology at relatively lower temperature compared to solid state techniques.^{10,32} Herein, in this paper, an effective hydrothermal reaction was employed to prepare pure $\text{Li}_2\text{MnSiO}_4$ composites using MCM-41 or common SiO₂ as template, which

Received:February 3, 2015Accepted:May 1, 2015Published:May 1, 2015

Research Article

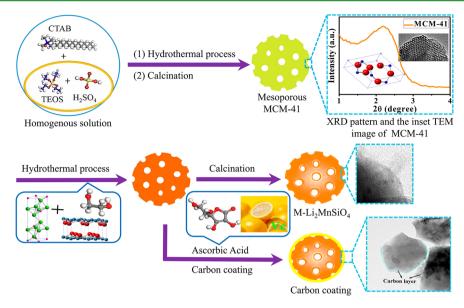
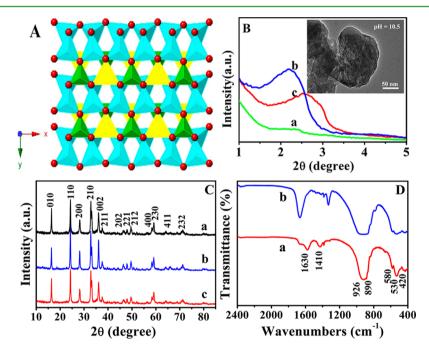



Figure 1. Schematic illustration of preparation of mesoporous MCM-41 and the Li₂MnSiO₄ samples.

Figure 2. (A) Projections of crystal structure of Li_2MnSiO_4 along the [001] (*z*) directions, with orthorhombic (*Pmn2*₁) structure where MnO_4 (marked light yellow) and SiO₄ (marked green) tetrahedra all aligned in the same direction. Oxygen atoms are denoted by red balls, and LiO_4 are colored in cyan. (B) XRD patterns of mesoporous MCM-41 template at different pH conditions (a, pH = 9.5; b, pH = 10.5; c, pH = 11.5). (C) XRD patterns of B-Li₂MnSiO₄ (black line), M-Li₂MnSiO₄/C (blue line), and carbon-coated M-Li₂MnSiO₄/C (red line). (D) FT-IR transmittance spectrum for M-Li₂MnSiO₄ (a, before cycling test; b, after 10 cycles).

were called M-Li₂MnSiO₄ and B-Li₂MnSiO₄, respectively. Additionally, the impacts of carbon coating on the structural, morphological, and electrochemical characteristics of Li₂MnSiO₄ were also investigated in our study. As a cathode material for lithium ion battery, the porous cathode material significantly enhanced the specific capacity, benefiting the design of electrode materials with high surface area for the lithium ion battery field.

EXPERIMENTAL SECTION

Preparation processes of MCM-41 template and Li_2MnSiO_4 nanoparticles in this study were performed through a hydrothermal method,^{33,34} and the synthetic routes are schematically illustrated in Figure 1. In a typical procedure, a mixture of TEOS (tetraethylorthosilicate, Si $(OC_2H_5)_4$) and H₂SO₄ solution was stirred at room temperature until it was clear. CTAB (cetyltrimethyl ammonium bromide) was added to the above mixture under vigorous stirring. After that, NaOH solution was dropwise added into the above solution in order to adjust the pH value to 9–12. The homogeneous solution was transferred into hydrothermal reactor and then was heated at 100 °C for 48 h in an oven. Subsequently, the resultant solution was filtered, washed repeatedly with deionized water, and dried overnight at 100 °C. Finally, the dried sample was calcined at 550 °C for 7 h to obtain the MCM-41 powder.

Stoichiometric amounts of lithium hydroxide (LiOH·H₂O) and mesoporous MCM-41 were added in deionized water under vigorous stirring to form homogeneous dispersion. Then, the solution containing stoichiometric manganese chloride ($MnCl_2·4H_2O$) dissolved in

ACS Applied Materials & Interfaces

hexanediol was added into the above homogeneous dispersion. Afterward, the resultant mixture was stirred vigorously for several hours and transferred to an oven at 150 °C for 48 h, and then dried at 60 °C overnight to obtain the precursor powder. As for in situ carbon-coated M-Li₂MnSiO₄, the obtained precursor powder was thoroughly ground with ascorbic acid to form a homogeneous carbon layer; the content of carbon source was mixed with precursor powder at a weight ratio of 1.5:10. Finally, the carbon-mixed powder was heated in Ar atmosphere at 750 °C in a closed tube furnace. For comparison, bulk sample was also prepared with similar procedure using fumed silica as template.

The morphologies and particle size of the as-synthesized Li₂MnSiO₄ composites were examined by FE-SEM (field emission scanning electron microscopy, Zeiss, S-3500N) and TEM (transmission electron microscopy, JEOL-2010). XRD was performed on a diffractometer (Rigaku Ultima IV) using Cu K α radiation. FT-IR spectra were obtained on an infrared spectrometer (NEXUS-670). For fabrication of the cathode electrodes, 80 wt % of the as-prepared cathode material, 10 wt % of super P conductive carbon black, and 10 wt % polyvinylidene fluorid (PVDF) as binder in N-methylpyrrolidinone (NMP) were ground to obtain the slurry, which is coated onto aluminum foil. The electrodes were dried overnight at 120 °C in an oven. Electrochemical measurements were carried out by using CR2025 type coin cells. The as-prepared electrodes were used as cathodes and lithium metal as an anode, while the electrolyte was 1 M LiPF₆ dissolved in a mixture of ethylene carbonate-diethyl carbonate (EC/DEC = 1:1 v/v). All cells were tested in a voltage range 1.5-4.8 V at 0.1 C rate. The electrochemical impedance spectroscopy (EIS) measurements were performed on an electrochemical workstation (CHI 604D).

RESULTS AND DISCUSSION

The structures of the MCM-41 template and the Li₂MnSiO₄ samples are shown in Figure 2. The low angle XRD patterns of MCM-41 from 1° to 5° are also shown in Figure 2B, and inset is the corresponding TEM image of MCM-41 synthesized at pH = 10.5. MCM-41 synthesized at pH = 10.5 has a strong peak at $2\theta = 2^{\circ}-3^{\circ}$, corresponding to (100) reflection of highly ordered mesoporous MCM-41 structure. The value of d_{100} is calculated to be 4.033 nm by the Braggs law ($2d \sin \theta = n\lambda$), as seen in Table 1.

Table 1. Structure Properties of the As-Synthesized MCM-41 at pH = 10.5

sample	pН	a_0^a (nm)	d_{100}^{b} (nm)	$\frac{D_p^c}{(nm)}$	${S_{\text{BET}} \choose m^2 g^{-1}}$	$V (\operatorname{cm}^3 \operatorname{g}^{-1})^c$
MCM- 41	10.5	4.657	4.033	3.537	839.9	0.734

^{*a*}Unit cell parameter $a_0 = 2d_{100}/3^{1/2}$. ^{*b*}Interplanar crystal distance along [100] direction. ^{*c*}Pore diameter (D_p) and pore volume (V) determined by N₂ adsorption–desorption.

As for the other two samples prepared at pH = 11.5 and 9.5, the (100) peak is lower and cannot be observed, due to the less ordered structure. In general, the XRD patterns of MCM-41 are in good agreement with earlier reports.^{22,24}

Crystal structures of the as-prepared Li₂MnSiO₄ composites were analyzed with XRD patterns shown in Figure 2C. As can be seen from the XRD results, all three samples demonstrate similar XRD patterns, which are assigned to the Li₃PO₄ phase³⁵ and match well to that of the orthorhombic crystal structure with a space group of *Pmn*2₁. Generally, under our experimental conditions, there are no noticeable additional peaks attributed to impurity phases as reported in many literature studies, such as MnO and Li₂SiO₃, indicating that the Li₂MnSiO₄ samples were successfully prepared on the basis of both mesoporous MCM-41 and silica powder. In the case of using a MCM-41 template, the diffraction peaks of Li₂MnSiO₄ become sharper, indicating a higher degree of crystallinity. As for carbon-coated sample, the diffraction peaks show a lower intensity indicating that a higher content of carbon leads to lower crystallinity, which is in good agreement with an earlier report.²⁰

The FT-IR spectrum can provide supplementary evidence for the structure of M-Li₂MnSiO₄. Figure 2D shows the bands corresponding to the internal vibrations of the silicate anions in the range 400–2400 cm⁻¹. The positions of 890, 926, and 530 cm⁻¹ are characteristic absorption peaks of [SiO₄]. The peaks at 890 and 926 cm⁻¹ exhibit v_1 and v_3 mode of Si–O bonds, while the peaks at 530 and 580 cm⁻¹ are assigned to v_4 vibrations.³² The low frequency peaks at 420 cm⁻¹ perhaps indicate the motion of lithium ions. After 10 cycles, the characteristic adsorption peaks of [SiO₄] undergo drastic changes. The peaks at 890 and 926 cm⁻¹ merge into a broad peak, and slightly shift to the high frequency. A new adsorption band emerges during cycling around 790 cm⁻¹, which may be attributed to the bending vibration of Si–O–Si bonds in some [SiO₃] group due to the reducible reaction condition.

The morphologies of as-prepared products were characterized using scanning electron microscopy (SEM). As can be seen from Figure 3, the as-prepared B-Li₂MnSiO₄ particles (Figure 3A,a) and M-Li₂MnSiO₄ particles (Figure 3B,b) are well-distributed secondary particles composed of uniform round primary particles. The SEM micrographs of the carbon-coated M-Li₂MnSiO₄ (Figure 3C,c) show that materials are composed of individual particles around 100 nm in size with a clearly visible carbon coating layer. This carbon film, indicating the formation of surface secondary phase, could reduce the surface energy of the material, suppress the particle growth during heat treatment, and therefore shorten ion pathways and effectively enhance electronic conductivity.^{9,20} Carbon content was appropriately 5.919 wt % determined by thermal gravimetric analysis.

The porous size distribution and Brunauer-Emmett-Teller (BET) surface area of the MCM-41 template and Li₂MnSiO₄ composites were further studied by the N2 adsorptiondesorption analysis (Figure 4A,B). In this work the appropriate synthetic pH of MCM-41 is 10.5, and the corresponding structure properties are listed in Table 1. The porous MCM-41 template exhibits an ideal mesoporous structure as the adsorption-desorption isotherm of the MCM-41 template appears to be a type-IV curve^{2,29} (Figure 4A). Also, pore sizes of MCM-41 are well-distributed between 3 and 6 nm. For Li₂MnSiO₄ composites, the adsorption-desorption isotherm of the M-Li₂MnSiO₄ particles is quite similar to that of the MCM-41 template. However, the pore size distribution plot of M-Li₂MnSiO₄ particles shows a larger range 9–20 nm, which can be explained by the destroyed mesoporous structure of MCM-41 during synthetic process. Thus, M-Li₂MnSiO₄ particles show a BET specific surface area of only 65 m² g⁻¹, smaller than the specific surface area of MCM-41 template which is calculated to be 839 m² g⁻¹. For comparison, the adsorption-desorption isotherm of the B-Li₂MnSiO₄ composite (Figure 4B) does not exhibit a typical adsorption hysteresis loop. Nevertheless, the porous structure of M-Li₂MnSiO₄ particles is beneficial to the penetration of electrolyte to promote the lithium ion transportation.

The electrochemical properties of the corresponding cathode materials were evaluated by galvanostatic charge–discharge cycling and electrochemical impedance spectroscopy (EIS). Figure 5A shows the charge–discharge profiles for initial cycle of as-prepared electrodes in constant current between 1.5 and 4.8 V.

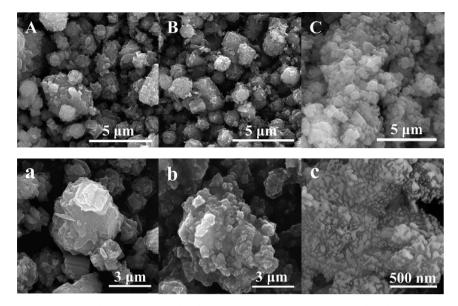


Figure 3. SEM images of B-Li₂MnSiO₄ (A, a), M-Li₂MnSiO₄ (B, b), and carbon-coated M-Li₂MnSiO₄ (C, c).

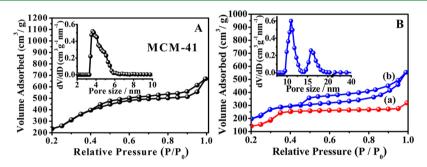


Figure 4. N_2 adsorption-desorption isotherm plots of (A) mesoporous MCM-41 template and (B) Li_2MnSiO_4 samples (a, B- Li_2MnSiO_4 ; b, M- Li_2MnSiO_4). Inset shows the corresponding pore size distribution.

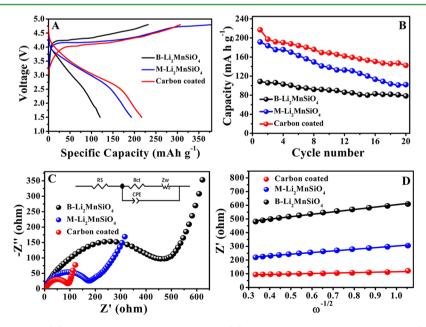


Figure 5. Electrochemical properties: (A) initial charge and discharge profiles, (B) cycling performance. Nyquist plots of (C) $B-Li_2MnSiO_4$ (black), $M-Li_2MnSiO_4$ (blue), and (D) carbon-coated $M-Li_2MnSiO_4$ (red).

The initial discharge capacity of the $M-Li_2MnSiO_4$ electrode is about 190 mA h g⁻¹, which is higher than that of the B- Li_2MnSiO_4 (about 120 mA h g⁻¹). This can be understood as

porous structure cathode material M-Li2MnSiO4 affords

increased surface area and a shorter diffusion length for Li⁺ at a

ACS Applied Materials & Interfaces

constant process. Additionally, the carbon-coated electrode shows the highest initial discharge capacity of 217 mA h g^{-1} .

The cycling performances (Figure 5B) of as-prepared electrodes were carried out at a constant current of 20 mA g⁻¹. The discharge capacities of the three materials all decrease gradually during cycling but undergo different fading rates. Discharge capacities of M-Li₂MnSiO₄ decrease rapidly during cycling, while the carbon-coated sample shows more stabilized capacity retention. Additional measurements such as the change in charge regime⁷ as well as the optimization of the synthesis conditions likely lead to a recovery of the lost capacity and improved capacity retention.

EIS tests were carried out for a further understanding of the electrochemical kinetic process of as-prepared electrodes during charge-discharge process. Figure 5C shows the Nyquist plots of the B-Li₂MnSiO₄, M-Li₂MnSiO₄, and carbon-coated M-Li₂MnSiO₄ composites. Each Nyquist plot combines a depressed semicircle in the high frequency region which is ascribed to the charge transfer process and a linear plot in the low frequency region representing typical behavior.^{2,10,18} The diameter of the semicircle in the high frequency region is equal to R_{ct} (charge transfer resistance). The M-Li₂MnSiO₄ electrode exhibits a charge transfer resistance of 175 Ω , smaller than that of B-Li₂MnSiO₄, indicating a facile Li⁺ charge transfer and then good electrochemical performance. This can be attributed to the porous structure of M-Li₂MnSiO₄ and then the shorter diffusion paths. Notably, carbon-coated electrode enjoys the smallest R_{ct} of less than 100 Ω , implying that carbon coating can greatly improve the electronic conductivity. Figure 5D displays the relationship between Z' and the reciprocal square root of the frequency $(\omega^{-1/2})$ in the low frequency region, and the slope of the straight line is σ . The Li⁺ diffusion coefficients calculated from the EIS results are summarized in Table 2. As shown in Table 2,

Table 2. Fitting Parameter Obtained from the Electrochemical Impedance Spectroscopy (EIS) Data to the Equivalent Circuits Shown in Figure 5C

sample	σ	Li^+ diffusion coefficient $(cm^2 S^{-1})$	transfer resistance (Ω)
B-Li2MnSiO4	175.708	6.8×10^{-16}	458
M-Li2MnSiO4	119.29	1.5×10^{-15}	176
carbon-coated	32.4091	2.0×10^{-14}	92

the calculated diffusion coefficients of lithium ion $(D_{\rm Li}+)$ of the three samples are 6.8×10^{-16} , 1.5×10^{-15} , and 2.0×10^{-14} cm² S⁻¹. Compared with the B-Li₂MnSiO₄ and M-Li₂MnSiO₄ electrodes, the carbon-coated one shows larger Li⁺ diffusion coefficients. In summary, the enhanced electronic conductivity and ionic conductivity lead to improved reaction kinetics and thus excellent charge–discharge performances.

CONCLUSIONS

In this study, Li_2MnSiO_4 cathode particles are synthesized through an effective template-assisted hydrothermal route. The as-prepared M-Li₂MnSiO₄ sample with porous architecture shows substantially higher specific charge–discharge capacity of 193 mA h g⁻¹ than that of B-Li₂MnSiO₄. The outstanding electrochemical performance is ascribed to the unique pore structure and improved specific contact area, which leads to better diffusion of electrolyte and shorter ion diffusion pathways. After carbon coating, the homogeneous carbon layer greatly contributes to high electronic conductivity, which thus leads to smaller charge transfer resistance of less than 100 Ω and better charge–discharge performances of the cathode material. In our report, fabricating porous structure and carbon coating strategy are effective routes for synthesizing Li₂MnSiO₄ cathode materials with high performance. Our results suggested a feasible way for production of high surface area electrode materials in energy storage applications.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chenrj@bit.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of China (21373028), National Key Program for Basic Research of China (2015CB251100), Major Achievements Transformation Project for Central University in Beijing, and Beijing Science and Technology Project.

REFERENCES

(1) Armand, M.; Tarascon, J. M. Building Better Batteries. *Nature* 2008, 451, 652–657.

(2) Kim, S. J.; Suk, J.; Yun, Y. J.; Jung, H. K.; Choi, S. Mesoporous Silica-Assisted Carbon Free Li_2MnSiO_4 Cathode Nanoparticles for High Capacity Li Rechargeable Batteries. *Phys. Chem. Chem. Phys.* **2014**, *16*, 2085–2089.

(3) Zhang, C.; Chen, Z.; Zeng, Y.; Zhang, Z.; Li, J. Insights into Changes of Lattice and Electronic Structure Associated with Electrochemistry of Li₂CoSiO₄ Polymorphs. *J. Phys. Chem. C* **2014**, *118*, 7351–7356.

(4) Deng, C.; Zhang, S.; Fu, B. L.; Yang, S. Y.; Ma, L. Characterization of Li₂MnSiO₄ and Li₂FeSiO₄ Cathode Materials Synthesized via a Citric Acid Assisted Sol–Gel Method. *Mater. Chem. Phys.* **2010**, *120*, *14*–17.

(5) Ellis, B. L.; Nazar, L. F. Sodium and Sodium-Ion Energy Storage Batteries. *Curr. Opin. Solid State Mater. Sci.* **2012**, *16*, 168–177.

(6) Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? *Science* **2014**, *343*, 1210–1211.

(7) Gummow, R. J.; He, Y. Mesoporous Manganese-Deficient Lithium Manganese Silicate Cathodes for Lithium-Ion Batteries. *RSC Adv.* **2014**, *4*, 11580–11584.

(8) Wang, M.; Yang, M.; Ma, L.; Shen, X.; Zhang, X. Structural Evolution and Electrochemical Performance of $\text{Li}_2\text{MnSiO}_4/\text{C}$ Nanocomposite as Cathode Material for Li-Ion Batteries. *J. Nanomater.* **2014**, *4*, 1–6.

(9) Gummow, R. J.; Han, G.; Sharma, N.; He, Y. Li₂MnSiO₄ Cathodes Modified by Phosphorous Substitution and the Structural Consequences. *Solid State Ionics* **2014**, *259*, 29–39.

(10) Jiang, X.; Xu, H.; Liu, J.; Qian, Y. Hydrothermal Synthesis of the Li_2MnSiO_4/C Nanocomposite as a Cathode Material for Lithium-Ion Batteries. *Mater. Lett.* **2013**, *113*, 9–12.

(11) Sun, D.; Wang, H.; Ding, P.; Zhou, N.; Huang, X.; Tan, S.; Tang, Y. In-Situ Synthesis of Carbon Coated $\text{Li}_2\text{MnSiO}_4$ Nanoparticles with High Rate Performance. *J. Power Sources* **2013**, *242*, 865–871.

(12) Liu, J.; Xu, H.; Jiang, X.; Yang, J.; Qian, Y. Facile Solid-State Synthesis of $\text{Li}_2\text{MnSiO}_4/\text{C}$ Nanocomposite as a Superior Cathode with a Long Cycle Life. *J. Power Sources* **2013**, 231, 39–43.

(13) Świętosławski, M.; Molenda, M.; Furczoń, K.; Dziembaj, R. Nanocomposite C/Li_2MnSiO_4 Cathode Material for Lithium Ion Batteries. J. Power Sources 2013, 244, 510–514.

(14) Ghosh, P.; Mahanty, S.; Basu, R. N. Improved Electrochemical Performance of $\text{Li}_2\text{MnSiO}_4/\text{C}$ Composite Synthesized by Combustion Technique. *J. Electrochem. Soc.* **2009**, *156*, A677–A681.

ACS Applied Materials & Interfaces

(15) Dominko, R.; Bele, M.; Kokalj, A.; Gaberscek, M.; Jamnik, J. Li_2MnSiO_4 as a Potential Li-Battery Cathode Material. *J. Power Sources* **2007**, *174*, 457–461.

(16) Li, Y.-X.; Gong, Z.-L.; Yang, Y. Synthesis and Characterization of Li_2MnSiO_4/C Nanocomposite Cathode Material for Lithium Ion Batteries. J. Power Sources 2007, 174, 528–532.

(17) Gummow, R. J.; He, Y. Recent Progress in the Development of Li₂MnSiO₄ Cathode Materials. *J. Power Sources* **2014**, 253, 315–331.

(18) Hu, Z.; Zhang, K.; Gao, H.; Duan, W.; Cheng, F.; Liang, J.; Chen, J. Li₂MnSiO₄@C Nanocomposite as a High-Capacity Cathode Material for Li-Ion Batteries. *J. Mater. Chem. A* **2013**, *1*, 12650–12656.

(19) Wang, F.; Chen, J.; Wang, C.; Yi, B. Fast Sol–Gel Synthesis of Mesoporous Li_2MnSiO_4/C Nanocomposite with Improved Electrochemical Performance for Lithium-Ion Batteries. *J. Electroanal. Chem.* **2013**, 688, 123–129.

(20) Zhang, S.; Deng, C.; Liu, F. L.; Wu, Q.; Zhang, M.; Meng, F. L.; Gao, H. Impacts of In Situ Carbon Coating on the Structural, Morphological and Electrochemical Characteristics of Li₂MnSiO₄ Prepared by a Citric Acid Assisted Sol–Gel Method. *J. Electroanal. Chem.* **2013**, 689, 88–95.

(21) Thatshanamoorthy, V.; Suresh, R.; Giribabu, K.; Manigandan, R.; Narayanan, V. Characterization of Mo-MCM-41 and Its Electrochemical Sensing Property. *Synth. React. Inorg., Met.-Org., Nano-Met. Chem.* **2014**, *44*, 1194–1198.

(22) Yang, G.; Deng, Y.; Wang, J. Non-Hydrothermal Synthesis and Characterization of MCM-41 Mesoporous Materials from Iron Ore Tailing. *Ceram. Int.* **2014**, *40*, 7401–7406.

(23) Han, B.; Zhang, F.; Feng, Z.; Liu, S.; Deng, S.; Wang, Y.; Wang, Y. A Designed Mn_2O_3/MCM -41 Nanoporous Composite for Methylene Blue and Rhodamine B Removal with High Efficiency. *Ceram. Int.* **2014**, 40, 8093–8101.

(24) Xing, Z.; Asiri, A. M.; Obaid, A. Y.; Sun, X.; Ge, X. Carbon Nanofiber-Templated Mesoporous TiO_2 Nanotubes as a High-Capacity Anode Material for Lithium-Ion Batteries. *RSC Adv.* **2014**, *4*, 9061–9063.

(25) Casino, S.; Di Lupo, F.; Francia, C.; Tuel, A.; Bodoardo, S.; Gerbaldi, C. Surfactant-Assisted Sol Gel Preparation of High-Surface Area Mesoporous TiO₂ Nanocrystalline Li-Ion Battery Anodes. *J. Alloys Compd.* **2014**, *594*, 114–121.

(26) Fu, C.; Li, G.; Luo, D.; Huang, X.; Zheng, J.; Li, L. One-step Calcination-Free Synthesis of Multicomponent Spinel Assembled Microspheres for High-Performance Anodes of Li-Ion Batteries: a Case Study of $MnCo_2O_4$. ACS Appl. Mater. Interfaces **2014**, *6*, 2439–2349.

(27) Gregori, M.; Benito, P.; Fornasari, G.; Migani, M.; Millefanti, S.; Ospitali, F.; Albonetti, S. Preparation of Pd/Cu MCM-41 Catalysts for Hydrodechlorination: Influence of the Synthesis Procedure. *Microporous Mesoporous Mater.* **2014**, *190*, 1–9.

(28) Raji, F.; Pakizeh, M. Kinetic and Thermodynamic Studies of Hg(II) Adsorption onto MCM-41 Modified by ZnCl₂. *Appl. Surf. Sci.* **2014**, 301, 568–575.

(29) Qian, J.; Zhou, M.; Cao, Y.; Ai, X.; Yang, H. Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO₄ Microspheres for High-Performance Lithium-Ion Batteries. *J. Phys. Chem.* C 2010, 114, 3477–3482.

(30) Gao, L.; Liu, R.; Hu, H.; Li, G.; Yu, Y. Carbon-Decorated $Li_4Ti_5O_{12}/Rutile TiO_2$ Mesoporous Microspheres with Nanostructures as High-Performance Anode Materials in Lithium-Ion Batteries. *Nanotechnology* **2014**, 25, 175402.

(31) Ma, X.; Liu, M.; Gan, L.; Tripathi, P. K.; Zhao, Y.; Zhu, D.; Xu, Z.; Chen, L. Novel Mesoporous Si@C Microspheres as Anodes for Lithium-Ion Batteries. *Phys. Chem. Chem. Phys.* **2014**, *16*, 4135–4142.

(32) Luo, S.; Wang, M.; Sun, W. Fabricated and Improved Electrochemical Properties of Li_2MnSiO_4 Cathodes by Hhydrothermal Reaction for Li-Ion Batteries. *Ceram. Int.* **2012**, *38*, 4325–4329.

(33) Shen, S.; Chen, J.; Koodali, R. T.; Hu, Y.; Xiao, Q.; Zhou, J.; Wang, X.; Guo, L. Activation of MCM-41 Mesoporous Silica by Transition-Metal Incorporation for Photocatalytic Hydrogen Production. *Appl. Catal., B* **2014**, *150–151*, 138–146. (34) Carraro, P.; Elías, V.; García Blanco, A.; Sapag, K.; Moreno, S.; Oliva, M.; Eimer, G. Synthesis and Multi-Technique Characterization of Nickel Loaded MCM-41 as Potential Hydrogen-Storage Materials. *Microporous Mesoporous Mater.* **2014**, *191*, 103–111.

(35) Gong, H.; Zhu, Y.; Wang, L.; Wei, D.; Liang, J.; Qian, Y. Solidstate Synthesis of Uniform $\text{Li}_2\text{MnSiO}_4/C/\text{Graphene}$ Composites and Their Performance in Lithium-Ion Batteries. *J. Power Sources* **2014**, 246, 192–197.